
Report No. KS-09-9 ▪ FINAL REPORT ▪ June 2012

Final Report on Video Log Data Mining Project

Anupama Krishnan
Chris Lewis
Dwight Day
Kansas State University 



 

 

1 Report No. 

KS-09-9 
2   Government Accession No. 

 
3 Recipient Catalog No. 

 

4 Title and Subtitle 
Final Report on Video Log Data Mining Project 

5 Report Date 
June 2012 

6 Performing Organization Code 

 

7 Author(s) 
 Anupama Krishnan, Chris Lewis, and Dwight Day 

 

8 Performing Organization Report 

No.  

 

9 Performing Organization Name and Address 
Kansas State University 

Department of Electrical and Computer Engineering 

2061 Rathbone Hall 

Manhattan, Kansas 66506-5204 

Telephone: (785) 532-5600 

10 Work Unit No.  (TRAIS) 
 

11 Contract or Grant No. 

C1809 

12 Sponsoring Agency Name and Address 
Kansas Department of Transportation 

Bureau of Materials and Research 

700 SW Harrison Street 

Topeka, Kansas 66603-3745 

13 Type of Report and Period 

Covered 

Final Report 

July 2008–September 2009 

14 Sponsoring Agency Code 

 

15 Supplementary Notes 

 

16 Abstract 

This report describes the development of an automated computer vision system that identities and inventories road signs 

from imagery acquired from the Kansas Department of Transportation’s road profiling system that takes images every 26.4 

feet on highways throughout the state. Statistical models characterizing the typical size, color, and physical location of signs 

are used to help identify signs from the imagery. First, two phases of a computationally efficient K-Means clustering 

algorithm are applied to the images to achieve over-segmentation. The novel second phase ensures over-segmentation 

without excessive computation. Extremely large and very small segments are rejected. The remaining segments are then 

classified based on color. Finally, the frame to frame trajectories of sign colored segments are analyzed using triangulation 

and Bundle adjustment to determine their physical location relative to the road profiler. Objects having the appropriate color, 

and physical placement are entered into a sign database. To develop the statistical models used for classification, a 

representative set of images was segmented and manually labeled determining the joint probabilistic models characterizing 

the color and location typical to that of road signs. Receiver Operating Characteristic curves were generated and analyzed to 

adjust the thresholds for the class identification. This system was tested and its performance characteristics are presented.  

 

17 Key Words 

Sign Inventory, Road Profiling, Video Log, Data Mining 
18 Distribution Statement 

No restrictions.  This document is  

available to the public through the  

National Technical Information Service, 

Springfield, Virginia  22161 

19 Security Classification 

(of this report) 

Unclassified 

20  Security 

Classification (of this page)         

Unclassified 

21 No. of pages 

62 
22 Price 

 

Form DOT F 1700.7 (8-72) 



 

 



 

 
 

Final Report on Video Log Data Mining Project 
 

Final Report 

 

 

 

 

 

 

Prepared by 

 

Anupama Krishnan 

Chris Lewis 

Dwight Day 

 

Kansas State University 

 

 

 

 

 

 

A Report on Research Sponsored by 

 

THE KANSAS DEPARTMENT OF TRANSPORTATION 

TOPEKA, KANSAS 

 

 

 

June 2012 

 
© Copyright 2012, Kansas Department of Transportation 



 

 

NOTICE 
 

The authors and the state of Kansas do not endorse products or manufacturers. Trade and 

manufacturers names appear herein solely because they are considered essential to the object of 

this report.  

 

This information is available in alternative accessible formats. To obtain an alternative format, 

contact the Office of Transportation Information, Kansas Department of Transportation, 700 SW 

Harrison, Topeka, Kansas 66603 or phone (785) 296-3585 (Voice) (TDD). 

 

 

 

DISCLAIMER 
 
The contents of this report reflect the views of the authors who are responsible for the facts and 

accuracy of the data presented herein. The contents do not necessarily reflect the views or the 

policies of the state of Kansas. This report does not constitute a standard, specification or 

regulation. 

 
 



 



Abstract

This report describes the development of an automated computer vision system that

identifies and inventories road signs from imagery acquired from the Kansas Department

of Transportation′s road profiling system that takes images every 26.4 feet on highways

through out the state. Statistical models characterizing the typical size, color, and phys-

ical location of signs are used to help identify signs from the imagery. First, two phases

of a computationally efficient K-Means clustering algorithm are applied to the images to

achieve over-segmentation. The novel second phase ensures over-segmentation without ex-

cessive computation. Extremely large and very small segments are rejected. The remaining

segments are then classified based on color. Finally, the frame to frame trajectories of sign

colored segments are analyzed using triangulation and Bundle adjustment to determine their

physical location relative to the road profiler. Objects having the appropriate color, and

physical placement are entered into a sign database. To develop the statistical models used

for classification, a representative set of images was segmented and manually labeled deter-

mining the joint probabilistic models characterizing the color and location typical to that

of road signs. Receiver Operating Characteristic curves were generated and analyzed to ad-

just the thresholds for the class identification. This system was tested and its performance

characteristics are presented.
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Chapter 1

Introduction

This report describes development of an automated machine vision based road sign in-

ventorying system that catalogs road signs from Kansas Department of Transportation’s,

(KDoT), imagery. KDoT’s road profiler takes true color 1200x1600 pixel pictures every

26.4 feet along highways through out the state of Kansas. Many vision researchers have

worked on building intelligent transportation systems addressing similar problems. Most

utilize some means of segmentation process followed by a classification process that identi-

fies the segments of a desired class.1–5 Our system uses a novel difference image technique

to efficiently achieve over-segmentation. It is also unique in that the 3D physical location

of objects is ascertained and used to aid in classification. Being able to determine the 3-D

location of imaged objects may permit database users to verify that road sign regulations

are met as well as provide a myriad of other data mining opportunities. Our design is

constrained by the massive number of images acquired yearly, and by the lack of control

over lighting, viewing geometry and background. Algorithms are restricted to those that

are computationally quick and memory efficient.

Processing begins by over-segmenting each image using two phases of a low cluster count

K-Means algorithm. The first phase operates on the original image and the second on a

difference image. Next overly large and small segments are rejected eliminating the vast

majority from further consideration. Next, a statistical measure is used to classify segments

as potential signs based on their color. Next, feature matching is performed to identify

1



sign colored segments that recur in consecutive frames. Recurring features are triangulated

to estimate their 3D location relative to the vehicle’s path. In the first triangulation pass,

straight line motion between frames is assumed. The residual triangulation error is evaluated

to determine if trajectory adjustment is warranted. When the error is large, usually along

curved roads, Bundle Adjustment(BA) is used to refine motion estimates and facilitate

better localization. Finally, another statistical classification process is performed using the

3D location. This technique takes advantage of the fact that signs are usually placed adjacent

to the road at prescribed heights and distances from the road. A Neyman-Pearson hypothesis

test is used to justify the use of Receiver Operating Characteristic curves for adjusting

classifier thresholds. This report details the segmentation and classification process and

presents results from an example set of highway images to demonstrate the efficiency and

performance of the system.
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Chapter 2

Segmentation

2.1 K-Means Segmentation

The goal of segmentation is to divide an image into clusters of like pixels. Ideally each cluster

represents a single physical object. Like many image processing systems, we desire a seg-

mentation that is slightly over segmented such that segments do not span multiple physical

objects, but sometimes physical objects form multiple segments. K-Means is a computa-

tionally quick iterative algorithm that finds K natural clusters. It has seen widespread use

for image segmentation for example, in medical applications such as6 and7. The K-means

algorithm iteratively finds the centers for k natural clusters in a set of data. The procedure

for K-Means consists of the following five steps8:

Step 1: Initialize cluster centers µ1, µ2, ...µk and number of required clusters, k

Step 2: Classify each sample based on the nearest µi

Step 3: Recompute µi as the mean of the samples in each of the new classifications obtained

from step 2

Step 4: Repeat steps 2 and 3 until there is no change in µi

Step 5: Return µ1, µ2, ...µk

3



The number of clusters, k, is critical. Larger k results in more segments and increased

computational complexity, while smaller values results in under-segmentation, but are com-

putationally quick. For the images obtained from KDoT, sixteen clusters provided an ap-

propriate trade off between adequate segmentation and computational complexity.

2.2 Two Pass Segmentation

Fig. 2.1, depicts the results with k = 16 with all pixels in each segment’s color shifted to

the closest cluster center’s color. Even with only 16 colors, the image represents the original

well. Note that the yellow road sign is only slightly shifted in color since k-means selected

its shade of yellow as one of the 16 cluster centers.

Figure 2.1: This figure shows the original image and the color segmented image obtained
using K-Means Clustering on an image with a yellow road sign. In the color segmented
image the pixels belonging to the yellow portion of the road sign are grouped into a segment.

However, under-segmentation also occurs as shown in Fig. 2.2 where k-means assigns

the small road sign to the cluster color associated with similarly colored background objects

resulting in the merging of the two physical objects into one segment. This occurs often

with green or white signs as vegetation or white sky are common backdrops. This deficiency

is alleviated using a difference image technique.
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Figure 2.2: Here, the green sign’s color is not one of the 16 color centers. Its pixels are
shifted to the closest cluster center resulting in under segmentation.

2.3 Difference Image Segmentation

Usually in cases where under-segmentation occurs with K-Means, smaller objects undergo

large shifts since none of the cluster centers are that close to the object’s original color. This

phenomenon led to the use of a difference image which is formed as the euclidean distance

in color space between the original image and the K-Means color segmented image for each

pixel. The difference image accentuates objects receiving large color shifts. Proper seg-

mentation of these problematic objects is achieved by reapplying K-Means to the difference

image. Proper segmentation of the green sign from Fig. 2.2 shown in Fig. 2.3.

Figure 2.3: Significant color shifts are accentuated in this gray scale difference image, (left).
K-Means applied to the color difference image properly segments the green sign.
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Chapter 3

Classification

3.1 Elimination of Large and Small Segments

A large number of segments are obtained from the segmentation phase. Most of them are

very small, a few pixels in size. Others are very large, such as segments of the sky. Neither

need further consideration and are eliminated by applying size thresholds. For the current

process, all segments that are either smaller than 50 pixels or larger than 20000 pixels are

removed. Fig. 3.1 shows the segments remaining from Fig. 2.2 after thresholding.

Figure 3.1: Black and white depiction of remaining segments after size threshold is applied
to the color segmented image shown in Fig. 2.2 and difference image shown in Fig. 2.3.

6



3.2 Color based Classification

Road signs are more uniformly colored than typical objects. They have a unique correlation

between their red, green and blue components even with differences in lighting. The joint

color distributions for different sign types were determined by manually extracting numerous

road signs of every type from a set of images. To help automatically classify segments its

proximity to each of these joint color distributions is determined using the Mahalanobis

distance measure.9–11 The Mahalanobis distance is given by Eq. (3.1).

r =
√

(~x− ~µ)TΣ−1(~x− ~µ) (3.1)

where ~µ is the mean vector and Σ is the covariance matrix of the prior joint color distribution

and ~x is an input point in multidimensional space8. For this research, ~x contains the average

values of the Red, Green and Blue components of all the pixels belonging to the segment

being analyzed. An optimum distance threshold is practically determined from the knee

of the Receiver Operating Characteristic (ROC) curves. These curves are generated using

a test set of 25 images containing signs of each color. The knee of each of these curves

corresponds to the threshold value that gives the best trade off between false positives

rate and true positive rate. A Neyman-Pearson Hypothesis test provides the theoretical

justification for setting thresholds in this manner.

Few natural objects have a brilliant color similar to yellow road signs and hence the color

classifier is nearly ideal for identifying segments of this type as shown in Fig. 3.2. For other

colors such a green and white signs, this is unfortunately not the case.

For example, Fig. 3.3 displays some reasonably sized segments having similar color to

green road signs, but which are not signs. Another example of this case is illustrated in Fig.

3.4, where road stripes were falsely classified as road signs due to their similarity in color

distribution. Therefore, additional classification steps are necessary to accurately identify

most sign types.

7



(a)

(b)

(c)

Figure 3.2: The color classifier is able to identify yellow signs with very high precision.
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Figure 3.3: Results of color based classification on segments obtained in 3.1. The highlighted
regions depict the segments with a color distribution similar to that of road signs.

Figure 3.4: A case of false positives for yellow signs.

9



Chapter 4

Shape Classifier

Fourier descriptors are a common tool used for pattern recognition and shape discrimina-

tion.12 They are determined using the periphery of the object. The advantage of using the

Fourier descriptors is their invariance to the starting point of the boundary, scale and rota-

tion.13,14 Fourier Descriptors begin by representing the boundary of a region as a sequence of

complex numbers. By taking the Fourier transform of this sequence and retaining only the

lower frequencies, an approximation of the shape can be obtained. For recognition purposes

the ratio of the magnitude of the upper frequencies with the first frequency, provides a set

of scale and rotation invariant features. Since, signs are generally simple polygons with few

sides; only a few terms are required to represent their shape. For this work, the number of

fourier descriptors chosen was 6. An example of the shape approximation is shown in Fig.

4.1. The blue boundary shows the best fitting circle, red shows the best fitting ellipse and

magenta shows the shape approximation with six Fourier descriptors for the two segments.

The Mahalanobis distance between the computed Fourier descriptors for a segment and

the distribution of the descriptors of the desirable shapes is calculated in a similar manner

as in color classification. Again, a threshold is applied to discard segments with the wrong

shape. The shape thresholds are also determined using the ROC analysis. The output after

elimination using this shape classifier is shown in Fig. 4.1 and Fig. 4.2.

As fourier descriptors are strictly dependent on the boundary, they fail in instances

where there are slight variations such as the case shown in Fig. 4.2. When tested on a

10



(a)

(b)

Figure 4.1: This figures shows the results of classification based on shape of segments
remaining from color classification in the example shown in Fig. 3.3. Fourier descriptors
describe shape from the boundary of the segment. The best fitting circle (Blue), ellipse (Red)
and a 6th order shape (Magenta) are shown for the two segments. The shape classifier
applied to both sets of correctly colored segments, eliminates segments with improper shape
but identifies the sign with the desired shape.

11



(a) Image with green road signs, left, and resulting segments after color classification, right.

(b) Magnified image from (a) showing that one sign has an irregular boundary, (left). The shape classifier
was able to identify the sign with the rectangular boundary but however misclassifies the sign with the
irregular boundary as not sign.

Figure 4.2: A case of false negative while using fourier descriptors for classification.
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set of 50 images, the shape classifier was observed to be 92% efficient at identifying road

signs correctly but misclassified 8% of the road signs as not signs. This shortcoming was

overcome by replacing the shape classifier with one based on the feature’s frame to frame

trajectory.
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Chapter 5

Location Classifier

Images are captured sequentially every 26.4 feet. Therefore, road signs are likely to appear

in a sequence of several images and follow a characteristic trajectory. Matching features

from segments appearing in consecutive images and comparing their trajectory through the

field of view of the camera to that typical of road signs eliminates segments that are not

road signs. In our system, the SIFT algorithm,15 tracked features from frame to frame.

The 2-D trajectory of the features identified by SIFT was compared to a probabilistic

model determined from a test set of sequential images containing road signs. Similar to

color based classification where the feature was a 3 dimensional vector, components of

which were the red, green and blue values of the pixels, the feature space for the location

based classification are four dimensional vectors defining the motion of typical road signs.

The components of each vector are the u and v pixel coordinates of the road sign and the

change in location in u and v of that matched feature in terms of pixels in the consecutive

image. An example illustrating the trajectory of a road sign is shown in Fig. 5.1 and Fig.

5.2.

This process removed problematic segments including billboards containing similar color

distribution. Fig. 5.3 shows the resulting segments from the size and color based classifica-

tion on an example pair of consecutive images. The outcome of location based classification

on these segments is shown in Fig. 5.4. Typically, all the false positives from the color

classifier are removed by the trajectory classifier. Frame to frame feature matching is an

14



Figure 5.1: Four consecutive images obtained from KDoT’s road profiler
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(a) Trajectory

(b) Magnified trajectory

Figure 5.2: Positions of road sign in four images
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Figure 5.3: Two subsequent images obtained from the video log. The highlighted regions
indicate the segments that remain after size and color based classification.

Figure 5.4: Results of location based classification. All the segments that do not follow the
trajectory of a typical road sign are removed.

unstructured and computationally efficient form of triangulation.

This method worked well on straight roads as shown in Fig. 5.3 and Fig. 5.4, but failed

on curves where trajectory of objects is altered through the field of view. The system now

uses multiple images to triangulate objects and ascertain their three dimensional location

relative to the vehicle. These 3D positions help distinguish potential road signs from objects

not correctly positioned. An initial triangulation is carried out assuming straight line motion

but the residual error is monitored to detect non-linear vehicle motion. In those relatively

infrequent cases where the vehicle turns substantially, the vehicle’s true motion is estimated

using a process called Bundle Adjustment (BA), and the 3D locations are re-estimated for

17



the classifier.

To implement a 3D location classification, features must be tracked frame to frame. As

the vehicle moves, images of objects change in size. The Scale Invariant Feature Transform

(SIFT) algorithm15, is used by our system to track objects frame to frame because it is

robust to changes in scale, rotation and lighting. SIFT is state-of the-art, and therefore

commonly applied to video tracking applications.16,17 An example of feature matching using

SIFT is shown in Fig. 8.3. After identifying objects that appear in successive images using

SIFT, it is important to remove lens distortion from the images to ensure a more accurate

triangulation. The next chapter describes the procedure that was adopted to remove the

distortion from the regions of interest identified by SIFT.

18



Chapter 6

Camera Calibration

Real lenses distort images and corrupt the triangulation process. For our purposes, it is not

necessary to undistort the entire image. Rather, to minimize computations, lens distortion

effects are taken into account only for the features tracked frame to frame. The imaging

model for a camera including lens distortion is determined through camera calibration.18

Calibration parameters include the focal lengths, fx and fy, the principal point, (cx, cy),

and the skewness.19 To estimate these parameters, this effort used a Calibration toolbox for

Matlab to process multiple images of a large checker board pattern printed on a 4x8 sheet

of structural foam. The calibration process is explained in18 and20 and the tool itself is

available on line.21 To permit accurate triangulation, these calibration parameters are used

to shift the location of features to where they would appear in the focal plane of an ideal

pin hole camera. Photographs of the calibration target, with and without distortion, are

shown in Fig. 6.1.

The next chapter describes the triangulation process adopted to address the research

problem.

19



(a) With lens Distortion

(b) Without lens Distortion

Figure 6.1: Checkerboard pattern used to calibrate for lens distortion, left. Unwarped image
shown on right.

20



Chapter 7

Triangulation

Triangulation is a well known photogrammetric process for determining the 3-D location of

features that appear in two or more images taken from different vantage points. Several

methods exist for triangulation22. The optimal triangulation method involves the evaluation

of the roots of a sixth degree polynomial to compute the best estimate22. However, this is

computationally expensive and hence a very computationally simple method was employed

to obtain an estimate for the 3-D location of features in a pair of successive images. We use

an analytic solution where the location estimate is the midpoint of the line segment passing

between the points of closest approach between two rays, one from each camera. The pin

hole camera model depicted in Fig. 7.1 defines each ray, ~q1 and ~q2, emanating from the focal

points of each camera, passing through the image plane at the pixel coordinates u, v where

the feature was observed in each image. Ideally these two rays intersect at the feature.

Noise in camera position, orientation or in lens distortion results in these rays being skew.

The shortest line segment between the two rays is mutually perpendicular to both and its

direction is defined by their cross product as follows,

~q3 = ~q1 × ~q2 (7.1)

A vector loop equation involving these rays defined as follows

~C1 + γ1~q1 + γ3~q3 = ~C2 + γ2~q2 (7.2)

21



This may be rewritten as:

~C1 − ~C2 = [−~q1 ~q2 − ~q3]

 γ1

γ2

γ3

 (7.3)

and then solved to determine the unknowns γ1, γ2 and γ3. The midpoint of the line

segment

~fxyz = ~C1 + γ1~q1 +
γ3

2
~q3 (7.4)

is our analytic triangulation estimate. Back projecting this midpoint into both images and

comparing to the observed image provides the measure of residual triangulation error as

follows:

e = (u1 − û1)
2 + (v1 − v̂1)

2 + (u2 − û2)
2 + (v2 − v̂2)

2 (7.5)

where û and v̂ are back projected image estimates given by:[
ûi
v̂i

]
=
f

z

[
x
y

]
(7.6)

where x,y, and z are the coordinates of fxyz, expressed the ith camera’s frame.

The initial triangulation is performed assuming straight line motion without any rotation

because images are usually taken on straight highways with little curvature. In this case the

difference between the vectors ~C1 and ~C2 is accurately known. However, on curved roads

the straight line assumption is not met and triangulation error is high as illustrated in Fig.

7.2. For these cases, the motion estimate is refinement using BA.

22



Figure 7.1: A feature is imaged by two cameras located at ~C1 and ~C2. The rays ~q1 and ~q2
from these locations are defined by the feature’s u and v pixel coordinates and the associated
focal lengths f1 and f2. Ideally, these two rays intersect at the feature, but are more typically
skew. Triangulation is the process of estimating the feature’s location ~fxyz.

23



Figure 7.2: Triangulation error is large with road profiling system traverses a curved path

24



Figure 7.3: Usually images are taken with straight line motion between frames, and the vec-
tors ~C1 and ~C2 are accurately known. However, on curved roads the straight line assumption
is not met and triangulation error is high.

25



Chapter 8

Bundle Adjustment

Bundle Adjustment, (BA), modifies the camera’s pose estimate including position, ~Ci, and

the orientation, (roll (Rr), pitch (Rp) and yaw (Ry)) along with the 3-D locations, Ti =

(xi; yi; zi), of the features to reduce the triangulation error. In our implementation, the

frame of reference is the first camera’s frame. The six pose parameters of the second camera

and three location parameters for each feature relative to this frame are optimized. The

vector of parameters for m tie points is given by:
→
K=

[
~Ct

2;Rr;Rp;Ry;T1; . . . Tm

]
. The cost

function optimized by BA is the sum of triangulation errors over all features. This non-

linear cost function is solved with the iterative Levenburg-Marquardt algorithm23. This

report only presents the basic idea behind Bundle Adjustment. Further elaboration on the

concept of BA and comparison between different cost functions is given in24 and22. Without

constraints other than tie points scale is not determined. Constraining our solutions to match

the known ||~C1 − ~C2|| = 26.4 feet of motion between images fixes scale and for our system

BA converges providing initial pose estimates are reasonably accurate. Fig. 8.1 to Fig. 8.6

depicts the results of using triangulation and BA on some objects that appear in a pair of

successive images obtained from KDoT’s road profiling system. From the pair of images,

the relative locations of various objects is determined. The physical location of objects is

strongly tied to whether or not they are a sign.

Classification based on physical location is analogous to color based classification. To

characterize the statistical distribution of sign locations, a database was created from 50
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Figure 8.1: Two consecutive images to be analyzed.

Figure 8.2: Scene with various objects identified for triangulation. BA will reduce triangu-
lation error and allow scene reconstruction.
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Figure 8.3: For triangulation, features must be matched from frame to frame. SIFT is used
to accomplish this.

Figure 8.4: The top view of the 3-D scene containing the labeled objects obtained from BA.
Note how BA accurately computes the 3-D location of the features extracted from the road
stripes. They appear in between the yellow road sign on the left and the green and white
road signs on the right.
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Figure 8.5: Front View of 3-D plot of the locations of the matched features computed by
BA.
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Figure 8.6: Features matched from the two road signs on the right are shown on the left
and the zoomed view of figure 9 showing the the front view of the corresponding 3-D location
of the features obtained using BA is shown on the right. Each division is 1 foot and it can be
seen that the larger road sign is about 3.5 feet wide and has a height of about 2 feet. Hence
an estimate of the size of the road sign is obtained.

images containing the 3-D location of features from road signs. Tie points were extracted

using SIFT on just the regions of the image containing the road signs. Their 3D locations

were determined using triangulation and BA. The mean (x, y) values of the positions of

road signs was (1.9783, 10.2391) in the first camera’s frame, ten feet to the right and two

feet above the camera. Note, since z is along the direction of travel, that it cannot be used.

The Euclidean distance from this mean is now the Manhalanobis distance measure used for

location based classification.

The Mahalanobis distance measures the proximity of a point to a distribution. This

measure is used in both the color and location classifiers. Distance thresholds need to be

determined for decisions to differentiate between objects being signs or not. The basis for

selecting these critical threshold values is described in the next chapter.
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Chapter 9

Optimal Threshold Value Selection

The selection of thresholds for classification can be developed as a hypothesis testing prob-

lem. The details on the various types of hypothesis tests and their comparisons are given

in25. Here we apply the Neyman-Pearson test with a binary hypotheses for detecting white

road signs. The problem can be defined as:

H0: Not White Road Sign

H1: White Road Sign.

The statistics of color are modeled using 50 images to visually construct a database of the

red, blue and green values of all the pixels in objects that are and are not white road signs.

Models of probability density functions are fit to the color histograms for both hypotheses.

The PDFs are illustrated in Fig. 9.1. For red data, the PDF is modeled as:

p0 (y) =
1√

2π ∗ 1489
exp

{
−(y − 118.337)2

2 ∗ 1489

}
(9.1)

∀ 20 ≤ y ≤ 252.6

p1 (y) = 4.211 ∗ 10−9exp

{
y√
235

}
(9.2)

∀ 136.2 ≤ y ≤ 253.8
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Figure 9.1: PDFs for the two hypotheses: p0 (y) and p1 (y)
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The likelihood ratio test is defined by:

choose

{
H1 if L(y) ≥ η

H0 if L(y) < η
(9.3)

where L(y) is the likelihood ratio function given by:

L(y) =
p1 (y)

p0 (y)
(9.4)

Figure 9.2: Monotonic and continuous Likelihood function.

Since in this case L(y) is continuous and monotonic, as shown in Fig. 9.2, the relationship

between L(y) and η can be expressed as a relationship between y and some threshold yη.

Randomization is not necessary. Therefore, the decision rule for the Neyman-Pearson test
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is:

δ(y) =

{
1 if y ≥ yη

0 if y < yη
(9.5)

The trade-off between probability of false alarm and probability of detection is attained

by setting a bound on the probability of false alarm.

max
δ
PD(δ) subject to PF (δ) ≤ α (9.6)

Where PD(δ) is the probability of detection, PF (δ) is the probability of false alarm and α

is the bound mentioned earlier and it is also known as the level or significance level of the

test25. Probability of false alarm is computed as a function of yη by finding the area under

the curve p0 (y) in the observation space of hypothesis H1. This expression is equated to

α. The decision threshold yη is then expressed in terms of the false alarm α. PD is then

calculated as the area under the PDF p1(y) in the observation space of H1. The expressions

obtained after setting PF = α for yη and PD are given as:

yη = 118.337− 54.57erf−1(2α− 0.9995) (9.7)

PD = 6.4555 ∗ 10−8

(
15495907.18− exp

{
yη√
235

})
(9.8)

The plot of PD Vs PF as shown in Fig. 9.3 is called the Receiver Operating Curve(ROC).

The effect of change in the value of alpha is illustrated in Fig. 9.4, Fig. 9.5 and Fig.

9.6. Increasing values of α lead to more false positives. Setting the threshold at the knee if

the curve gives the best trade off between the probability of false alarm and probability of

detection.

Hypothesis tests were not developed for all colors nor the location classifiers as some of

the distributions were more complex. Instead, thresholds determined by generating ROC

curves directly from the test data and setting the thresholds to the knee of the ROC curve.

The next chapter describes how the ROC curves were estimated experimentally.
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Figure 9.3: ROC obtained for the test designed for Not-White/White road signs based on
color
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Figure 9.4: An image obtained from KDoT’s road profiler.
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Figure 9.5: α = 0.1,yη obtained is 172. More false positives. All the segments that have
pixels whose Red, Green and Blue values are above yη are classified as white road signs.
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Figure 9.6: α = 0.03. yη obtained is 207. Lower value of alpha results in fewer false
positives.
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Chapter 10

Receiver Operating Characteristic
(ROC) Curves

10.1 ROC curve

Classifiers produce four possible outcomes. If the classifier correctly identifies an object, it is

a true positive (TP). If an object is incorrectly classified it is a true negative (TN). Objects

of a class label not classified as such represent false negatives (FN). Likewise, objects not

of the given type that are falsely identified as such are false positives (FP). The confusion

matrix shown in Fig. 10.1b. ROC curves display the relationship between True Positive

Rate (TPR) and the False Positive Rate (FPR) as the threshold is adjusted. The closer

the curve is to the top left corner the better the performance26. The TPR and the FPR is

calculated using:

TPR =
TP

TP + FN
(10.1)

FPR =
FP

FP + TN
(10.2)

10.2 Practical generation of ROC curves.

Using the database of manually labeled objects from 50 images, the ROC curves for both

RGB color and XY distance thresholds and each sign color were constructed. An example
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(a) ROC curve relating the classification threshold to the TPR
and FPR for the color classifier

(b) Confusion matrix

Figure 10.1: The arrow at the knee of the curves indicates an optimal threshold. A higher
threshold minimally improves the TPR, but significantly increases the FPR. Note, since color
performs well for classification the x-axis scale is magnified.
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ROC curve obtained for green colored road sign classifier is shown in Fig. 10.1a. In the

example, with the threshold set at the knee as indicated all the segments belonging to road

signs were identified and 1.8% of the non-sign segments were misclassified as road signs.
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Chapter 11

Results

The thresholds for both the location and color classifiers were determined from the ROC

curves. A new set of 100 images were tested with the algorithm. It was observed that all the

road signs were identified with almost no false positives. Cases showing the classification of

road signs in a pair of test images after location based classification are illustrated in Fig.

11.1 and Fig. 11.2.

Therefore, the 3-D location based classification is a more complete and optimal solution

than the previously developed shape and 2-D location based classifiers.
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(a)

(b)

(c)

Figure 11.1: Example of process: a. Original image pair., b. All objects classified as poten-
tially road signs by their size and color., c. Location based classifier correctly distinguishes
the signs from among all the remaining objects
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(a)

(b)

Figure 11.2: With BA to estimate motion between frames, the triangulation and thus sign
identification remains effective even on curved roads.
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Chapter 12

Future Scope

The current method can identify road signs, determine their type, 3-D location with respect

to the camera and size. Future scope of the research is to determination of the distance

between road signs of a particular type and investigate processes that take advantage of

3D information ascertained from triangulation such as measuring road easement profiles.

Once the road signs are obtained, the size of the road signs can be estimated just as in the

example case shown in Fig. 8.6. Future work will also include identification of the type of

post on which the road sign is mounted with the possibilities being wood post, metal post

or steel beam. This can be implemented with the prior knowledge of the location of the

road sign and the color information.
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Chapter 13

Conclusion

This paper describes the development of an automated system that identifies and inventories

road signs from imagery obtained from KDoT’s road profiling system of highways through

out the state. Over-segmentation of images was achieved using K-Means clustering on

first, the original image and then again on a difference image. This was followed by three

stages of classification based on size, color and 3-D location of road signs relative to the

camera. Triangulation and Bundle Adjustment were used to estimate the 3-D location of

signs. Mahalanobis distance was used to measure the proximity of an object to being a road

sign based on color and location. ROC curves were used to identify decision thresholds for

the color and location classifiers. The system was tested and the corresponding results are

documented. Future scope of this research is also presented.
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